

Dynamic Analysis of the hFan, a Parallel Hybrid Electric Turbofan Engine

George L. Thomas
N&R Engineering/Vantage Partners, LLC

Dennis E. Culley, Jonathan L. Kratz, and Kenneth L. Fisher
NASA Glenn Research Center

2018 AIAA Joint Propulsion Conference July 11, 2018, Cincinnatti, OH

Introduction

- Motivation
- Engine Design Process (Systems Analysis)
- Dynamic Systems Analysis
- NASA hFan
 - Engine
 - Closed-loop system
- Simulation Results
 - Baseline Controller
 - Dynamic Systems Analysis
- Conclusions

Introduction – Motivation

NASA

- NASA N+3 commercial aviation goals
 - Targeting 2030-2035 time frame
 - Noise, emissions, fuel burn
- Concept architectures developed to meet goals
- NASA performs research work on these concepts
 - Advanced Air Transport Technologies (AATT) project
 - Systems Analysis and Integration (SA&I) subproject
- Particular concept studied: SUGAR Volt / hFan
- Studying hFan can answer general hybrid questions

Introduction – Engine Design Process

- Engines are designed using <u>systems analysis</u>
 - Steady-state system-level simulations
 - Evaluate system tradeoffs to find optimal designs
- Propulsion systems designed given objectives and constraints
 - Objectives: fuel burn, emissions, noise, cost, performance
 - Constraints: component min/max operating conditions (e.g. stall margins)
 - Transients (dynamic) cause engine to run closer to constraints
 - Solution is to add additional margin to steady-state (design) constraint

Introduction – Dynamic Systems Analysis

- Performance requirement for closed-loop system (Accelerate within 5 seconds)
- Steady-state engine design **operability** constraints include
 - Uncertainty stack (how much needed for off-nominal margin debits)
 - Transient stack (how much is needed for engine power transitions)
- Controls affects performance vs operability tradeoff

DSA workflow:

- Design family of controllers parametrically (using TTECTrA)
- Simulate resulting closed-loop systems to obtain performance metrics
- Metrics allow performance and operability trade to be assessed
- Knowledge of trade enables improvements early in design phase

Introduction – Dynamic Analysis Tools

- Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA)
 - Developed at NASA Glenn Research Center
 - Enables estimation of the closed-loop transient performance
 - https://github.com/nasa/TTECTrA/releases
 - TTECTrA designs controllers to protect engine during transient operation, preserving desired limits (stall margin (HPC/LPC), Fuel to Air Ratio, T40)
- Integrated TTECTrA with NPSS via S-function interface
- Enables dynamic analysis of future engine concepts

- Introduction
 - Motivation
 - Engine Design Process (Systems Analysis)
 - Dynamic Systems Analysis
- NASA hFan
 - Engine
 - Closed-loop system
- Simulation Results
 - Baseline Controller
 - Dynamic Systems Analysis
- Conclusions

NASA hFan

NASA hFan (Parallel Hybrid Electric Turbofan, for SUGAR Volt aircraft)

TOGW:
Top of Climb Thrust per engine:
Takeoff BET required per engine:
Takeoff SLST:

170,000 lbf 3,500 lbf

17,500 lbf 20,100 lbf

- Sized for high L/D, TBW, 150 PAX aircraft
 - 3500 mi max mission
 - 900 mi avg/design mission
- Direct drive, two spool turbofan
- N+3 cycle/technology assumptions
- 1380 HP electric machine (EM) on LP spool
 - Assists driving fan for most of flight
 - Driven by batteries in underwing pods

NASA hFan

- Q: How does motor make this different from conventional turbofan?
- A: If open loop motor power ramped up and fuel flow held constant...

- Fan goes up op-line
- LPC PR goes up
- HPC goes down op-line
- HPT doesn't really move
- LPT Wc goes down
- Takeaways:
- Adding motor power...
 - reduces LPC stall margin, affords some SM control
 - increases fan corrected speed (increases thrust)
- Control design takes this into account

NASA hFan – Closed-Loop System

- TTECTrA control system revised to control thrust directly
 - Assumes onboard thrust model (model-based engine control, or MBEC)
 - Simplifies control design and analysis, and is appropriate for conceptual study
- Fuel control: Gain scheduled PI with...
 - Accel limiter: Wf/Ps3 max schedule
 - Decel limiter Wf/Ps3 min scalar

Motor control:

- Steady-state power = f(thrust demand)
- Additional transient power = f(thrust control error)
- Saturation and rate limit prevent exceeding motor limits
- Assume maximum assist power delivered instantaneously is best
- Controller designed to do this
- Baseline control design vars
 - $max T4 = 3140 \, ^{\circ}R$
 - VAFN variation <= 30% of max
 - min HPC stall margin = 14%
 - min LPC stall margin = 10%
 - min Fan stall margin = 10%

- Introduction
 - Motivation
 - Engine Design Process (Systems Analysis)
 - Dynamic Systems Analysis
- NASA hFan
 - Engine
 - Closed-loop system
- Simulation Results
 - Baseline Controller
 - Dynamic Systems Analysis
- Conclusions

Simulation Results – Baseline Controller

- Analyze transient response of baseline controller
 - Run 15-100% thrust response (accel and decel) at controller design points (red points)
 - Evaluate off-design closed-loop response with Monte Carlo accel/decel simulations (blue)
- Results show closed loop system is operable throughout envelope
 - Satisfies constraints
- Closed-loop system also <u>meets performance requirements</u>
 - Response time less than 5 s when doing a 15-100% transient at static condition

Simulation Results - DSA

- TTECTrA used to tune accel limiters for different HPC stall margin constraints
 - Controllers designed for 5, 7, 9, 11, 13, and 15% minimum HPC stall margin
 - 15-100% snap accel transients ran at sea-level static for each controller
 - Thrust, stall margin responses shown
 - Response time (15% 95% thrust) and minimum HPC stall margin metrics obtained

Simulation Results – DSA

- Engine can accelerate in 5 s while preserving 13.0-13.5% HPC SM
- However, this assumes baseline motor control design
 - Attempts to apply maximum motor power <u>as soon as the transient begins</u>
- As motor power ramp rate limit was decreased, changes to tradeoff observed
 - Varying both fuel controller accel limiter and motor ramp rate simultaneously yields following metrics

- It turns out if ramp rate chosen such that motor response time is approximately 1 second, we get a better trade (higher stall margin for a 5 second accel)
- Also examined design excursions for motor power rating (not shown; see paper)
 - More transient power not found to be beneficial for hFan system

- Introduction
 - Motivation
 - Engine Design Process (Systems Analysis)
 - Dynamic Systems Analysis
- NASA hFan
 - Engine
 - Closed-loop system
- Simulation Results
 - Baseline Controller
 - Dynamic Systems Analysis
- Conclusions

Conclusions

- Closed-loop N+3 hFan model demonstrated
 - NPSS model integrated into Simulink-based TTECTrA controller via S-Function
 - System is operable throughout envelope
- Dynamic systems analysis conducted
 - TTECTrA controllers designed to assess performance vs operability
 - Suggests steady-state HPC stall margin can be reduced, and engine redesigned
 - Conduct DSA at more flight and uncertainty conditions to obtain better estimate
- Trends observed (useful information for future work)
 - Holding other things constant, application of low spool motor power...
 - ...pushes fan and HPC up and down along their op-lines
 - ...pushes LPC PR up and down
 - Instantaneous application of motor power is not optimal for operability
 - Moderate ramp rate that gives a 1 second rise time is appropriate for hFan

Acknowledgments

 This work was funded by the NASA Advanced Air Transport Technologies (AATT) project

- Thanks go to others at NASA Glenn Research Center who contributed to this work
 - Jeffrey Csank
 - William Haller
 - Sanjay Garg
 - Thomas Lavelle
 - Scott Jones

Thank You!!

Questions?